欢迎来到贵港市环保产业网!

主办单位:贵港市环境保护行业协会
电话:0775-4563256
邮箱:gghbhx@126.com
地址:广西贵港市民族公园西门旁

当前位置:主页 > 协会动态 >

重金属废水处理工艺

作者:admin发布时间:2018-10-12

水资源在国民经济发展和社会生产中发挥着重要的作用,同时也是人们生活中不可缺少的一部分。但是随着工农业的迅速发展,工业废水大量排放,使得水体重金属污染日益严重。据统计,我国每年产生400亿t左右的工业废水。其中重金属废水约占60%。这些废水严重污染地表水与地下水,造成可利用水资源总量急剧下降。重金属废水一般来源于矿山开采、金属冶炼与加工、电镀、制革、农药、造纸、油漆、印染、核技术及石油化工等行业[1-2]。重金属难以生物降解且易被生物吸收富集,毒性具有持续性,是一类极具潜在危害的污染物,如不治理必将对生态环境及人体健康造成严重的威胁[3-4]。然而,重金属作为一类重要的宝贵的资源,又具有很高的使用价值。因此如何有效治理水体重金属污染,保护人类健康和生态环境,同时回收利用重金属,缓解我国资源和环境的压力,是当前不可忽略的问题。 
 
 
 
 
目前,重金属废水处理方法主要有三种:第一种化学法,通过化学反应将重金属离子去除的方法,包括化学沉淀法、化学还原法、电化学和高分子重金属捕集剂法等。第二种物理法,在不改变重金属离子化学形态的条件下,通过吸附、浓缩而分离的方法,包括吸附法、溶剂萃取法、蒸发和凝固法、离子交换法和膜分离法等。第三类是生物法,主要是借助微生物或植物的絮凝、吸收、积累、富集等作用去除重金属的方法,包括生物絮凝、植物修复和生物吸附。本文介绍了上述方法在重金属废水中的应用及研究进展,以便为水体重金属污染的治理提供一定理论的参考。 
 
 
 
 
1化学法 
 
 
 
 
1.1化学沉淀法 
 
 
 
 
化学沉淀法是广泛应用于工业重金属废水处理中比较有效的方法,是向水体中投加化学药品,通过沉淀反应去除重金属离子的方法,主要包括氢氧化物沉淀、硫化物沉淀和铁氧体法。 
 
 
 
 
氢氧化物沉淀法处理含重金属废水具有技术成熟、投资少、处理成本低、管理方便等优点。MirbagherzSA等[5]采用碱性试剂,如石灰、氢氧化钠对含铜铬废水进行处理,在pH值分别为12和8.7时,Cu2+和Cr3+完全沉淀下来,废水可达标排放。唱鹤鸣等[6]用氢氧化钠溶液逐渐调节电镀废水pH值,在多个pH值点分别沉淀出电镀废水中铜、铬、锌和镍,使废水中的重金属含量减少到最低。虽然氢氧化物沉淀法可以实现重金属离子从废水中的分离,但氢氧化物沉淀法也存在不足之处:对于两性氢氧化物,pH值若控制不当,重金属离子将会再次溶解;对稀溶液中重金属去除效果不好;沉淀体积量大、含水率高、过滤困难。目前此法在重金属废水的处理中已很少应用。 
 
 
 
 
硫化物沉淀反应速度较快,沉淀物溶解度低,可以选择性处理重金属离子,通过冶炼,实现重金属离子的回收。李静文[7]采用硫化钠沉淀法处理模拟含铅废水。在反应时间20min,硫化钠投加量与铅离子的物质的量比为5∶1,初始pH值为8的条件下,对废水中铅离子的去除率为99.72%,出水达到了国家污水综合排放标准。硫化物处理重金属废水时,沉淀剂本身在水中残留,过量时易形成水溶性多硫化物,遇酸生成硫化氢气体,产生二次污染[8]。 
 
 
 
 
目前应用较广的是铁氧体法[9],是指向重金属废水中投加硫酸亚铁盐,通过控制pH值和加热条件等,使废水中的重金属离子与铁盐生成稳定的铁氧体共沉淀物。左明等[10]研究了铁氧体法处理含镍、铬、锌、铜的废水,处理后,出水水质指标符合国家污水排放标准。但处理时间较长,温度要求较高,约70℃,因此不适用于处理较大规模的重金属废水,目前常将铁氧体法同其他废水处理方法联合使用。陈梦君等[11]利用铁氧体联合硫化物沉淀处理电镀废水,Cu、Cr及Ni的去除率分别高达94.51%、97.78%和96.94%,达到电镀污染物排放标准。 
 
 
 
 
1.2电化学法 
 
 
 
 
电化学法是近年发展起来的颇具竞争力的水处理方法,它是应用电解原理,通过电极反应和重金属离子在溶液中的迁移来实现对废水净化。随着科技发展,传统电化学处理工艺的改进以及新型电化学反应器的研制,使电化学法在重金属废水治理领域的应用更为有效,更加广泛。 
 
 
 
 
1.2.1电絮凝法 
 
 
 
 
电凝聚法作为一项比较成熟的废水处理工艺,得到了广泛应用。丁春生等[12]考察了初始pH值、电解时间、电流强度、NaCl投量、离子共存及曝气量等因素对电凝聚法处理含Cr6+、Cu2+废水的影响。研究表明,在一定的pH值下,电流强度为4A时,在很短的时间内,即可达到较稳定的去除效果;同时金属离子的共存对重金属废水的处理起促进作用,并且适当的曝气会提高重金属的去除率。凝聚法不宜长时间连续操作,否则电极表面易产生致密的黏膜,形成钝化。近年来采用脉冲电凝聚替代直流电凝聚可有效降低浓差极化,防止钝化。求渊等[13]利用脉冲电凝聚法处理电镀含铬废水,铬离子去除率保持在99.5%以上,达到排放标准。与直流电凝聚法相比,其能效比高,处理时间短。电凝聚法的最新研究方向是周期换向的脉冲信号电凝聚,既具备高压脉冲电凝聚法的优点,又由于两极均可溶,更有利于金属离子与胶体间的絮凝作用,防止电极钝化。 
 
 
 
 
1.2.2微电解 
 
 
 
 
微电解是基于电极表面的化学反应,在电解槽中加入一定量的活性填料,重金属废水为电解质,活性填料就形成了原电池,在填料的表面,电流在成千上万个细小的微电池内流动,在低压直流的作用下发生的电化学反应和絮凝作用,进而将水体重金属离子有效地去除[14]。 
 
 
 
 
在微电解工艺中,常用填充填料为铁屑(铸铁屑或钢铁屑)加入石墨或炭粒。周杰等[15]采用铁碳微电解法处理含铬废水,研究了废水中Cr(Ⅵ)的去除效果。结果表明,采用铁碳微电解法处理含铬废水对Cr(Ⅵ)的去除效果较好,出水Cr(Ⅵ)含量低于0.1mg/L,与常规的焦亚硫酸钠还原工艺相比,铁碳微电解处理含铬废水可节省75%以上的成本。微电解与其他工艺结合可增强废水的处理效果。黄树杰[16]采用微电解—碱液中和沉淀法处理Cr6+、Cu2+低浓度电镀废水,处理后废水中的Cr6+、Cu2+含量均达到了GB8978-96《污水综合排放标准》中的一级排放标准。电解—微电解相结合的复合电解技术是微电解发展的方向之一,探讨复合微电解技术的反应机理、过程动力学是目前该领域的研究重点。 
 
 
 
 
1.2.3电还原法 
 
 
 
 
电还原法又称阴极还原法,其原理为水体中的重金属离子在静电引力的作用下向阴极迁移,在阴极表面发生还原反应而析出。该法既能去除水体中的重金属离子,又能回收高纯度重金属。但对于低浓度的重金属废水,采用传统二维电极电解时,电流密度小,电解效率低,电耗大。电化学反应本质上是一种在固液相界面上发生的电子转移反应,因此,固液相界面传质问题成为要解决的难点,各类高效传质的反应器也成为研究重点。在工程中常用为三维电极反应器[17],这类反应器传质速度快,运行费用低,占地面积小,去除效率高,在几分钟内可使重金属浓度从100mg/L降至0.1mg/L。张少锋等[18]采用三维电极法处理低浓度酸性含铅工业模拟废水,在其他条件都相同的条件下,以泡沫铜为阴极材料的三维电极,Pb2+的去除率可达85%,明显优于以不锈钢板为阴极的二维电极的34%。陈武等[19]采用小型复极性矩型填充床作为三维电极反应器处理含锌废水,在最佳条件下,三维电极对模拟废水Zn2+去除率达到95.7%,满足国家污水综合排放标准GB8978-88Ⅱ级要求。 
 
 
 
 
2物理法 
 
 
 
 
2.1离子交换法 
 
 
 
 
离子交换法[20]是通过离子交换树脂与水体中重金属离子发生离子交换,使得水体中重金属离子浓度降低,从而使废水得以净化的方法。动力是离子间浓度差和交换剂上的功能基对离子的亲和能力。离子交换树脂一般有阳离子交换树脂,阴离子交换树脂,螯合树脂和腐植酸树脂等。在工业废水处理中,离子交换树脂主要用于回收重金属、贵金属和稀有金属等。RengarajS等[21]用IRN77和SKN1型阳离子交换树脂去除和回收核电站冷却废水中的Cr3+。魏健等[22]用所选的离子交换树脂处理含Mn2+废水,该法具有交换容量大、出水水质稳定的优点,并实现锰的回收利用。Li等[23]采用螯合离子交换树脂Chelex100和IRC748从溶液中置换出Cu2+和Zn2+,当平衡时,对Cu2+的最大交换量分别为0.88mol/kg和1.10mol/kg。 
 
 
 
 
离子交换树脂法可选择性地回收水体中的重金属,出水水质含重金属离子浓度远低于化学沉淀法处理后的水中重金属离子的浓度,产生的污泥量较少[24]。但是离子交换树脂存在强度低、不耐高温、吸附率低等缺点。提高交换树脂的吸附容量、吸附选择性、交换速度以及再生利用性能及机械强度是现在乃至今后的一个重要发展方向。 
 
 
 
 
2.2膜分离法 
 
 
 
 
作为一种新型的分离技术,膜分离技术[25]既能对废水进行有效的净化又能回收一些有用物质,同时具有节能、无相变、设备简单、操作方便等特点,因此在废水处理中得到了广泛的应用并显示了广阔的发展前景。其原理是通过半透膜选择透过作用,在外界能量的推动下,对溶液中溶质和溶剂进行分离,从而达到分离、提纯的目的。重金属废水的处理中常用的膜分离技术有微滤、超滤,纳滤、反渗透及电渗析等。 
 
 
 
 
由于重金属离子的粒径较小、单一的膜分离工艺无法对其较好的去除,通常采取膜组合工艺。万金宝等[26]采用中和/微滤工艺处理含Zn2+、Pb2+的废水。研究结果表明,Zn2+,Pb2+的去除率分别为90.92%、76.55%。加入絮凝剂后,去除率分别为99.92%,99.77%。邱运仁等[27]采用络合—超滤耦合工艺,以聚丙烯酸钠为络合剂,利用芳香聚酰胺超滤膜处理Cu2+废水。研究表明,在pH值为6,P/M为22时,Cu2+的截留率在97%以上。与微滤,超滤相比,纳滤是一种截留粒子精度较高的膜工艺,并且对于二价及多价金属离子有较高的截留率。Mehiguene等[28]研究了利用纳滤技术分离废水中的Cu2+和Cd2+,发现在溶液加入HNO3时Cd2+的截留率为35.2%,Cu2+的截留率为76.5%,能够实现铜离子和镉离子的有效分离。但纳滤过程中的浓差极化会导致水通量和脱盐率显著降低,也会引起一些难溶盐如CaSO4等在膜上沉淀,因此实际应用中应注重集成工艺的开发和过程的优化。 
 
 
 
 
膜分离技术具有高效、节能、无二次污染等优点,在废水处理领域有很大的发展潜力。但是工业废水成分复杂,处理条件较为苛刻,使得膜材料必须具有良好的分离性能和较长的使用寿命,从这方面来看,开发抗污染性能优良的高性能膜具有重要的战略意义。 
 
 
推荐新闻: